Công nghệ xử lý nước thải

Công ty Tư Vấn Môi Trường Sài Gòn chuyên tư vấn thiết kế hệ thống xử lý nước thải. Công ty có đội ngũ kỹ thuật chuyên sâu về môi trường, thiết kế các hệ thống hiện đại, giảm chi phí đầu tư, hoàn thành theo đúng thời gian đề ra.

Nước thải nói chung có chứa nhiều chất ô nhiễm khác nhau,  đòi hỏi phải xử lý bằng những công nghệ thích hợp khác nhau. Một cách tổng quát, các công nghệ xử lý nước thải  như sau:

  • Công nghệ xử lý nước thải AAO
  • Công nghệ xử lý nước thải AAO & MBBR
  • Công nghệ xử lý nước thải AAO & MBR
  • Công nghệ SBR
  • Công nghệ Unitank,…
     

Công nghệ  xử lý nước thải AAO

– Anaerobic: xử lý sinh học kị khí

Trong bể sinh học yếm khí xảy ra quá trình phân huỷ các chất hữu cơ hòa tan và dạng keo trong nước thải với sự tham gia của các vi sinh vật yếm khí. Vi sinh vật yếm khí sẽ hấp thụ các chất hữu cơ hoà tan có trong nước thải, phân huỷ và chuyển hoá chúng thành khí (khoảng 70 – 80% là metan, 20 – 30% là cacbonic). Bọt khí sinh ra bám vào hạt bùn cặn, nổi lên trên làm xáo trộn và gây ra dòng tuần hoàn cục bộ trong lớp cặn lơ lửng. Hiệu quả khử BOD và COD có thể đạt 70 – 90%. Các hệ thống yếm khí ứng dụng khả năng phân hủy chất hữu cơ của vi sinh vật trong điều kiện không có oxy. Quá trình phân hủy yếm khí chất hữu cơ rất phức tạp liên hệ đến hàng trăm phản ứng và sản phẩm trung gian. Tuy nhiên người ta thường đơn giản hóa chúng bằng phương trình sau đây:

Hỗn hợp khí sinh ra thường được gọi là khí sinh học hay biogas. Thành phần của Biogas như sau:

  • Methane (CH4)     55 ¸ 65%
  • Carbon dioxide (CO2)     35 ¸ 45%
  • Nitrogen (N2)     0 ¸ 3%
  • Hydrogen (H2)     0 ¸ 1%
  • Hydrogen Sulphide (H2S)     0 ¸ 1%

Methane có nhiệt trị cao (gần 9.000 kcal/m3). Do đó, nhiệt trị của Biogas khoảng 4.500 – 6.000 kcal/m3, tùy thuộc vào phần trăm của methane hiện diện trong Biogas.

Quá trình phân hủy yếm khí được chia thành 3 giai đoạn chính như sau:

  1. Phân hủy các chất hữu cơ cao phân tử.
  2. Tạo nên các axít.
  3. Tạo methane.

Ba giai đoạn của quá trình lên men yếm khí:


Ba nhóm vi khuẩn chính tham gia vào quá trình là nhóm vi sinh vật thủy phân chất hữu cơ, nhóm vi sinh vật tạo acid bao gồm các loài Clostridium spp., Peptococcus anaerobus, Bifidobacterium spp., Desulphovibrio spp., Corynebacterium spp., Lactobacillus, Actonomyces, Staphylococcus và Escherichia coli, và nhóm vi sinh vật sinh methane gồm các loài dạng hình que (Methanobacterium, Methanobacillus), dạng hình cầu (Methanococcus, Methanosarcina).

– Anoxic: xử lý sinh học thiếu khí

Nước thải được trộn đều bằng máy khuấy trộn chìm tạo dòng trong môi trường thiếu khí để nitrate hóa, khử nitrate và khử phospho.Trong qui trình này, NH3-N bị oxy hóa thành nitrite và sau đó thành nitrate bởi vi khuẩn Nitrosomonas và Nitrobacter trong từng vùng  riêng biệt. Nitrate được tuần hoàn trở lại vùng anoxic và được khử liên tục tối đa. Trong phản ứng này BOD đầu vào được xem như nguồn carbon hay nguồn năng lượng để khử nitrate thành những phân tử nitơ.

– Oxic:

Tại bể Aeroten diễn ra quá trình sinh học hiếu khí được duy trì nhờ không khí cấp từ máy thổi khí. Tại đây, các vi sinh vật ở dạng hiếu khí (bùn hoạt tính) sẽ phân huỷ các chất hữu cơ còn lại trong nước thải thành các chất vô cơ đơn giản như: CO2, H2O…

Chất hữu cơ + Vi sinh vật hiếu khí  → H2O + CO2  + sinh khối mới.

Công nghệ MBBR

Bể MBBR là thiết kế hệ thống xử lý nước thải đem lại kết quả cao nhất: diện tích nhỏ, khả năng xử lý triệt để ô nhiễm, dễ dàng tăng công suất mà không cần xây dựng thêm hệ thống.

Kỹ thuật dạng màng vi sinh chuyển động dựa vào giá thể vi sinh lưu động (Moving Bed Biological Reactor) là bước tiến lớn của kỹ thuật xử lý nước thải. Giá thể này có dạng cầu với diện tích tiếp xúc đáng nể: 350 m2- 400 m2/1 m3. Nhờ vậy sự trao đổi chất, nitrat hóa diễn ra nhanh nhờ vào mật độ vi sinh lớn tập trung trong giá thể lưu động. Vi sinh được di động khắp nơi trong bể, lúc xuống lúc lên xuống, lúc trái lúc phải trong “ngôi nhà” giá thể lưu động.

Lượng khí cấp cho quá trình xử lý hiếu khí đủ để giá thể lưu động vì giá thể nhẹ, xấp xỉ khối lượng riêng của nước.

Do tế bào vi sinh đã có “nhà” để ở (bám dính) nên chúng ta không cần bể lắng sinh học mà chỉ lọc thô rồi khử trùng nước. Khi cần tăng công suất lên 10-30% chỉ cần thêm giá thể vào bể là được.

Công nghệ Unitank

UNITANK là hệ thống hiếu khí xử lý nước thải bằng bùn hoạt tính cho phép xử lý tất cả các loại nước thải công nghiệp và sinh hoạt.

Cấu tạo đơn giản nhất của một hệ thống UNITANK là một khối bể hình chữ nhật được chia làm ba ngăn. Ba ngăn này thông thuỷ với nhau bằng cửa mở ở phần tường chung. Mỗi ngăn được lắp một thiết bị sục khí. Hai ngăn ngoài có thêm hệ thống máng tràn nhằm thực hiện cả hai chức năng vừa là bể Aeroten (sục khí) và bể lắng. Nước thải được đưa vào từng ngăn. Nước sau xử lý theo máng tràn ra ngoài; bùn sinh học dư cũng được đưa ra khỏi hệ từ hai ngăn ngoài.

Tùy thuộc vào lưu lượng, tính chất nước thải ban đầu và yêu cầu mức độ xử lý có thể lựa chọn một trong những hệ UNITANK phù hợp như: UNITANK đơn; đôi; một bậc hiếu khí;  hai bậc hiếu khí; hai bậc yếm khi –hiếu khí.

Hoạt động

Cũng giống như hệ thống bùn hoạt tính truyền thống, hoạt động của hệ thống UNITANK là liên tục. Ngoài ra, UNITANK còn làm việc theo một chu trình tuần hoàn bao gồm hai pha chính và hai pha trung gian nối tiếp nhau cho phép xử lý được liên tục mà không cần bể lắng riêng và hồi lưu bùn vào bể sục khí. Quá trình hoạt động này được tự động hoá hoàn toàn.

Mô tả chu trình

  • Pha chính thứ nhất

Nước thải được nạp vào ngăn A . Lúc này, ngăn A đang sục khí. Nước thải vào sẽ được hoà trộn với bùn hoạt tính. Các hợp chất hữu cơ được hấp thụ và phân huỷ một phần. Quá trình này gọi là sự tích luỹ. Từ ngăn A, hỗn hợp bùn lỏng (nước + bùn) chảy qua ngăn B và tiếp tục được sục khí. Bùn sẽ phân huỷ nốt các chất hữu cơ đã được hấp thụ ở ngăn A. Chúng ta gọi quá trình này là sự tái sinh. Cuối cùng, hỗn hợp bùn lỏng tới ngăn C. Ở đây không sục khí và không khuấy trộn. Trong điều kiện tĩnh lặng, các hạt bùn lắng xuống do trọng lực, còn nước trong được thu ra bằng máng tràn. Bùn sinh học dư được loại bỏ tại ngăn C. Để tránh sự lôi cuốn bùn từ A, B và tích luỹ ở C, hướng dòng chảy sẽ được thay đổi sau 120-180 phút (sự chuyển pha).

  • Pha trung gian thứ nhất

Mỗi pha chính được tiếp nối bằng một pha trung gian. Chức năng của pha này là chuyển đổi ngăn sục khí thành ngăn lắng. Nước thải được nạp vào ngăn B và cả hai ngăn A, C đều đang trong quá trình lắng. Trong thời gian này, pha chính tiếp theo (với hướng dòng chảy ngược lại) được chuẩn bị, bảo đảm cho sự phân tách tốt, dòng ra sạch.

  • Pha chính thứ hai

Pha này tương tự như pha chính thứ nhất với dòng chảy ngược lại. Nước thải được nạp vào ngăn C, chảy qua B tới A. Ngăn A bây giờ đóng vai trò là ngăn lắng (không sục khí, không khuấy trộn).

  • Pha trung gian thứ hai

Pha này đối nghịch với pha trung gian thứ  nhất . Ngăn sục khí C bây giờ sẽ chuyển thành ngăn lắng trong khi ngăn A đang ở phần cuối của quá trình lắng và ngăn B sục khí.

Pha này chẩn bị cho hệ thống bước vào pha chính thứ nhất và bắt đầu một chu trình mới.

Mô tả chi tiết bể sinh học theo mẻ SBR ( Sequence Batch Reactor)

SBR là một dạng của bể Aerotank. Khi xây dựng bể SBR nước thải chỉ cần đi qua song chắn, bể lắng cát và tách dầu mỡ nếu cần, rồi nạp thẳng vào bể. Ưu điểm là khử được các hợp chất chứa nitơ, photpho khi vận hành đúng các quy trình hiếu khí, thiếu khí và yếm khí.

Bể SBR  hoạt động theo 5 pha:

Pha làm đầy ( fill ): thời gian bơm nước vào kéo dài từ 1-3 giờ.

Dòng nước thải được đưa vào bể trong suốt thời gian diễn ra pha làm đầy. Trong bể phản ứng hoạt động theo mẻ nối tiếp nhau, tuỳ theo mục tiêu xử lý, hàm lượng BOD đầu vào, quá trình làm đầy có thể thay đổi linh hoạt: làm đầy – tĩnh, làm đầy – hòa trộn, làm đầy – sục khí.

Pha phản ứng, thổi khí ( React ): Tạo phản ứng sinh hóa giữa nước thải và bùn hoạt tính bằng sục khí hay làm thoáng bề mặt để cấp ôxy vào nước và khuấy trộn đều hỗn hợp. Thời gian làm thoáng phụ thuộc vào chất lượng nước thải, thường khoảng 2 giờ. Trong pha phản ứng, quá trình nitrat hóa có thể thực hiện, chuyển Nitơ từ dạng N-NH3 sang N-N¬O22- và nhanh chóng chuyển sang dạng N-NO3-

Pha lắng (settle): Lắng trong nước. Quá trình diễn ra trong môi trường tĩnh, hiệu quả thủy lực của bể đạt 100%.

Thời gian lắng trong và cô đặc bùn thường kết thúc sớm hơn 2 giờ.

Pha rút nước ( draw):  khoảng 0.5 giờ.

Pha chờ : Chờ đợi để nạp mẻ mới, thời gian chờ đợi phụ thuộc vào thời gian vận hành 4 quy trình trên và vào số lượng bể, thứ tự nạp nước nguồn vào bể.

Xả bùn dư là một giai đoạn quan trọng không thuộc 5 giai đoạn cơ bản trên, nhưng nó cũng ảnh hưởng lớn đến năng suất của hệ. Lượng và tần suất xả bùn được xác định bởi năng suất yêu cầu, cũng giống như hệ hoạt động liên tục thông thường. Trong hệ hoạt động gián đoạn, việc xả bùn thường được thực hiện ở giai đoạn lắng hoặc giai đoạn tháo nước trong. Đặc điểm duy nhất là ở bể SBR không cần tuần hoàn bùn hoạt hoá. Hai quá trình làm thoáng và lắng đều diễn ra ở ngay trong một bể, cho nên không có sự mất mát bùn hoạt tính ở giai đoạn phản ứng và không phải tuần hoàn bùn hoạt tính từ bể lắng để giữ nồng độ.

Một cách tổng quát, các phương pháp xử lý nước thải được chia thành các loại sau:

Phương pháp xử lý lý học;
Phương pháp xử lý hóa học và hóa lý;
Phương pháp xử lý sinh học.

Phương pháp xử lý lý học

Trong nước thải thường chứa các chất không tan ở dạng lơ lửng. Để tách các chất này ra khỏi nước thải. Thường sử dụng các phương pháp cơ học như lọc qua song chắn rác hoặc lưới chắn rác, lắng dưới tác dụng của trọng lực hoặc lực li tâm và lọc. Tùy theo kích thước, tính chất lý hóa, nồng độ chất lơ lửng, lưu lượng nước thải và mức độ cần làm sạch mà lựa chọn công nghệ xử lý thích hợp.
  

Song chắn rác

Nước thải dẫn vào hệ thống xử lý trước hết phải qua song chắn rác. Tại đây các thành phần có kích thước lớn (rác) như giẻ, rác, vỏ đồ hộp, rác cây, bao nilon… được giữ lại. Nhờ đó tránh làm tắc bơm, đường ống hoặc kênh dẫn. Đây là bước quan trọng nhằm đảm bảo an toàn và điều kiện làm việc thuận lợi cho cả hệ thống xử lý nước thải.
Tùy theo kích thước khe hở, song chắn rác được phân thành loại thô, trung bình và mịn. Song chắn rác thô có khoảng cách giữa các thanh từ 60 – 100 mm và song chắn rác mịn có khoảng cách giữa các thanh từ 10 – 25 mm. Theo hình dạng có thể phân thành song chắn rác và lưới chắn rác. Song chắn rác cũng có thể đặt cố định hoặc di động.

Song chắn rác được làm bằng kim loại, đặt ở cửa vào kênh dẫn, nghiêng một góc  45 – 600 nếu làm sạch thủ công hoặc nghiêng một góc 75 – 850 nếu làm sạch bằng máy. Tiết diện của song chắn có thể tròn, vuông hoặc hỗn hợp. Song chắn tiết diện tròn có trở lực nhỏ nhất nhưng nhanh bị tắc bởi các vật giữ lại. Do đó, thông dụng hơn cả là thanh có tiết diện hỗn hợp, cạnh vuông góc phía sau và cạnh tròn phía trước hướng đối diện với dòng chảy. Vận tốc nước chảy qua song chắn giới hạn trong khoảng từ 0,6 -1m/s. Vận tốc cực đại giao động trong khoảng 0,75 -1m/s nhằm tránh đẩy rác qua khe của song. Vận tốc cực tiểu là 0,4m/s nhằm tránh phân hủy các chất thải rắn.

Lắng cát

Bể lắng cát được thiết kế để tách các tạp chất vô cơ không tan có kích thước từ 0,2mm đến 2mm ra khỏi nước thải nhằm đảm bảo an toàn cho bơm khỏi bị cát, sỏi bào mòn, tránh tắc đường ống dẫn và tránh ảnh hưởng đến các công trình sinh học phía sau. Bể lắng cát có thể phân thành 2 loại: bể lắng ngang và bể lắng đứng. Ngoài ra để tăng hiệu quả lắng cát, bể lắng cát thổi khí cũng được sử dụng rộng rãi.

Vận tốc dòng chảy trong bể lắng ngang không được vượt qua 0,3 m/s. Vận tốc này cho phép các hạt cát, các hạt sỏ và các hạt vô cơ khác lắng xuống đáy, còn hầu hết các hạt hữu cơ khác không lắng và được xử lý ở các công trình tiếp theo.

Lắng

Bể lắng có nhiệm vụ lắng các hạt cặn lơ lửng có sẵn trong nước thải (bể lắng đợt 1) hoặc cặn được tạo ra từ quá trình keo tụ tạo bông hay quá trình xử lý sinh học (bể lắng đợt 2). Theo dòng chảy, bể lắng được phân thành: bể lắng ngang và bể lắng đứng.

Trong bể lắng ngang, dòng nước chảy theo phương ngang qua bể với vận tốc không lớn hơn 0,01 m/s và thời gian lưu nước thừ 1,5 – 2,5 h. Các bể lắng ngang thường được sử dụng khi lưu lượng nước thải lớn hơn 15000 m3/ngày. Đối với bể lắng đứng, nóc thải chuyển động theo phương thẳng đứng từ dưới lên đến vách tràn với vận tốc từ 0,5 – 0,6 m/s và thời gian lưu nước trong bể dao động khoảng 45 – 120 phút. Hiệu suất lắng của bể lắng đứng thường thấp hơn bể lắng ngang từ 10 – 20 %.

Tuyển nổi

Phương pháp tuyển nổi thường được sử dụng để tách các tạp chất (ở dạng rắn hoặc lỏng) phân tán không tan, tự lắng kém khỏi pha lỏng. Trong một số trường hợp, quá trình này còn được dùng để tách các chất hòa tan như các chất hoạt động bề mặt. Trong xử lý nước thải, quá trình tuyển nổi thường được sử dụng để khử các chất lơ lửng, làm đặc bùn sinh học. Ưu điểm cơ bản của phương pháp này là có thể khử hoàn toàn các hạt nhỏ, nhẹ, lắng chậm trong thời gian ngắn.

Quá trình tuyển nổi được thực hiện bằng cách sục các bọt khí nhỏ vào pha lỏng. Các bọt khí này sẽ kết dính với các hạt cặn. Khi khối lượng riêng của tập hợp bọt khí và cặn nhỏ hơn khối lượng riêng của nước, cặn sẽ theo bọt nổi lên bề mặt.

Hiệu suất quá trình tuyển nổi phụ thuộc vào số lượng, kích thước bọt khí, hàm lượng chất rắn. Kích thước tối ưu của bọt khí nằm trong khoảng 15 – 30 m (bình thường từ 50 – 120 m). Khi hàm lượng hạt rắn cao, xác xuất va chạm và kết dính giữa các hạt sẽ tăng lên, do đó, lượng khí tiêu tốn sẽ giảm. Trong quá trình tuyển nổi, việc ổn định kích thước bọt khí có ý nghĩa quan trọng.

Phương pháp xử lý hóa học và hóa lý

Trung hòa

Nước thải chứa acid vô cơ hoặc kiềm cần được trung hòa đưa pH về khoảng 6,5 – 8,5 trước khi thải vào nguồn nhận hoặc sử dụng cho công nghệ xử lý tiếp theo. Trung hòa nước thải có thể thực hiện bằng nhiều cách:
Trộn lẫn nước thải acid và nước thải kiềm;
Bổ sung các tác nhân hóa học;
Lọc nước acid qua vật liệu có tác dụng trung hòa;
Hấp thụ khí acid bằng nước kiềm hoặc hấp thụ ammoniac bằng nước acid.

Keo tụ – tạo bông

Trong nguồn nước, một phần các hạt thường tồn tại ở dạng các hạt keo mịn phân tán, kích thước các hạt thường dao động từ 0,1 – 10 m. Các hạt này không nổi cũng không lắng, và do đó tương đối khó tách loại. Vì kích thước hạt nhỏ, tỷ số diện tích bề mặt và thể tích của chúng rất lớn nên hiện tượng hóa học bề mặt trở nên rất quan trọng. Theo nguyên tắc, các hạt nhỏ trong nước có khuynh hướng keo tụ do lực hút Vander Waals giữa các hạt. Lực này có thể dẫn đến sự kết dính giữa các hạt ngay khi khoảng cách giữa chúng đủ nhỏ nhờ va chạm. Sự va chạm xảy ra nhờ chuyển động Brown và do tác động của sự xáo trộn. Tuy nhiên trong trường hợp phân tán cao, các hạt duy trì trạng thái phân tán nhờ lực đẩy tĩnh điện vì bề mặt các hạt mang tích điện, có thể là điện tích âm hoặc điện tích dương nhờ sự hấp thụ có chọn lọc các ion trong dung dịch hoặc sự ion hóa các nhóm hoạt hóa. Trạng thái lơ lửng của các hạt keo được bền hóa nhờ lực đẩy tĩnh điện. Do đó, để phá tính bền của hạt keo cần trung hòa điện tích bề mặt của chúng, quá trình này được gọi là quá trình keo tụ. Các hạt keo đã bị trung hòa điện tích có thể liên kết với các hạt keo khác tạo thành bông cặn có kích thước lớn hơn, nặng hơn và lắng xuống, quá trình này được gọi là quá trình tạo bông.

Phương pháp sinh học

Phương pháp sinh học được ứng dụng để xử lý các chất hữu cơ hòa tan có trong nước thải cũng như một số chất vô cơ như H2S, Sunfit, ammonia, Nito… dựa trên cơ sở hoạt động của vi sinh vật để phân hủy các chất hữu cơ gây ô nhiễm. Vi sinh vật sử dụng chất hữu cơ và một số khoáng  chất để làm thức ăn. Một cách tổng quát, phương pháp xử lý sinh học có thể phân thành 2 loại:

  • Phương pháp kị khí sử dụng nhóm vi sinh vật kị khí, hoạt động trong điều kiện không có oxy.
  • Phương pháp hiếu khí sử dụng nhóm vi sinh vật hiếu khí, hoạt động trong điều kiện cung cấp oxy liên tục.

Quá trình phân hủy các chất hữu cơ nhờ vi sinh vật gọi là quá trình oxy hóa sinh hóa. Để thực hiện quá trình này, các chất hữu cơ hòa tan, cả chất keo và chất phân tán nhỏ trong nước thải cần di chuyển vào bên trong tế bào vi sinh vật theo 3 giai đoạn chính như sau:

Chuyển các chất ô nhiễm từ pha lỏng đến bề mặt tế bào vi sinh vật.

Khuếch tán từ bề mặt tế bào qua màng bán thấm do sự chênh lệch nồng độ bên trong và bên ngoài tế bào.

Chuyển hóa các chất trong tế bào vi sinh vật, sản sinh năng lượng và tổng hợp tế bào mới.

Tốc độ quá trình oxy hóa sinh hóa phụ thộc vào nồng độ chất hữu cơ, hàm lượng các tạp chất và mức độ ổn định của lưu lượng nước thải vào hệ thống xử lý. Ở mỗi điều kiện xử lý nhất định, các yếu tố chính ảnh hưởng đến tốc độ phản ứng sinh hoá là chế độ thủy động, hàm lượng oxy trong nước thải, nhiệt độ, pH, dinh dưỡng và các yếu tố vi lượng.

Phương pháp sinh học kỵ khí

Quá trình phân hủy kỵ khí các chất hữu cơ là quá trình sinh hóa phức tạp tạo ra hàng trăm sản phẩm trung gian và phản ứng trung gian. Tuy nhiên phương trình phản ứng sinh hóa trong điều kiện kỵ khí có thể biểu diễn đơn giản như sau:

Vi sinh vật

Chất hữu cơ                        CH4 + CO2 + H2 + NH3 + H2S + Tế bào mới

Một cách tổng quát quá trình phân hủy kỵ khí xảy ra theo 4 giai đoạn:

  • Giai đoạn 1: thủy phân, cắt mạch các hợp chất cao phân tử;
  • Giai đoạn 2: acid hóa;
  • Giai đoạn 3: acetate hóa;
  • Giai doạn 4: methan hóa.

Các chất thải hữu cơ chứa nhiều chất hữu cơ cao phân tử như proteins, chất béo, carbohydrates, celluloses, lignin,… trong giai đoạn thủy phân, sẽ được cắt mạch tạo những phân tử đơn giản hơn, dễ phân hủy hơn. Các phản ứng thủy phân sẽ chuyển hóa protein thành amino acids, carbohydrate thành đường đơn, và chất béo thành các acid béo. Trong giai đoạn acid hóa, các chất hữu cơ đơn giản lại được tiếp tục chuyển hóa thành acetic acid, H2 và CO2. Các acid béo dễ bay hơi chủ yếu là acetic acid, propionic acid và lactic acid. Bên cạnh đó, CO2 và H2, methanol, các rượu đơn giản khác cũng được hình thành trong quá trình cắt mạch carbohydrate. Vi sinh vật chuyển hóa methan chỉ có thể phân hủy một số loại cơ chất nhất định như CO2 + H2, formate, acetate, methanol, methylamines, và CO.
Tùy theo trạng thái của bùn, có thể chia quá trình xử lý kỵ khí thành:

Quá trình xử lý kỵ khí với vi sinh vật sinh trưởng dạng lơ lửng như quá trình tiếp xúc kỵ khí (Anaerobic Contact Process), quá trình xử lý bằng lớp bùn kỵ khí với dòng nước đi từ dưới lên (UASB);

Qúa trình xử lý kỵ khí với vi sinh vật sinh trưởng dạng dính bám như quá trình lọc kỵ khí (Anaerobic Filter Process).

Phương pháp xử lý sinh học hiếu khí

Quá trình xử lý sinh học hiếu khí nước thải gồm ba giai đoạn:

Oxy hóa các chất hữu cơ;

Tổng hợp tế bào mới;

Phân hủy nội bào.

Các quá trình xử lý sinh học bằng phương pháp hiếu khí có thể xảy ra ở điều kiện tự nhiên hoặc nhân tạo. Trong các công trình xử lý nhân tạo, người ta tạo điều kiện tối ưu cho quá trình oxy hóa sinh hóa nên quá trình xử lý có tốc độ và hiệu suất cao hơn rất nhiều. Tùy theo trạng thái tồn tại của vi sinh vật, quá trình xử lý sinh học hiếu khí nhân tạo có thể chia thành:

Xử lý sinh học hiếu khí với vi sinh vật sinh trưởng dạng lơ lửng chủ yếu được sử dụng để khử chất hữu cơ chứa carbon như quá trình bùn hoạt tính, hồ làm thoáng, bể phản ứng hoạt động gián đoạn, quá trình lên men phân hủy hiếu khí. Trong số các quá trình này, quá trình bùn hoạt tính là quá trình phổ biến nhất.

Xử lý sinh học hiếu khí với vi sinh vật sinh trưởng dạng dính bám như quá trình bùn hoạt tính dính bám, bể lọc nhỏ giọt, bể lọc cao tải, đĩa sinh học, bể phản ứng nitrate với màng cố định.